Plant-Insect Interactions Lab - Publications

Recent Publications & Book Chapters

Publications

View in Google Scholar

1Post-doctoral Research Associate in Louis Laboratory, 2Graduate Student in Louis Laboratory, 3Undergraduate student advised by Dr. Louis, *Co-first authors, #Corresponding author

Publications

  1. Grover S, Mou DF, Shrestha K, Puri H, Pingault L, Sattler SE and Louis J# (2024). Impaired Brown midrib12 function orchestrates sorghum resistance to aphids via an auxin conjugate indole‐3‐acetic acid–aspartic acid. New Phytologist, 244: 1597–1615.
  2. Vasquez A, Belsky J, Khanal N, Puri H, Balakrishnan D, Joshi NK, Louis J, Studebaker G and Kariyat R (2024). Melanaphis sacchari/sorghi complex: current status, challenges and integrated strategies for managing the invasive sap-feeding insect pest of sorghum. Pest Management Science, DOI: 10.1002/ps.8291.
  3. Thudi M, Reddy MS, Naik YD, Cheruku VKR, Sangireddy MKR, Cuevas HE, Knoll JE, Louis J, Kousik CS, Toews MD and Ni X (2024). Invasive sorghum aphid: A decade of research on deciphering plant resistance mechanisms and novel approaches in breeding for sorghum resistance to aphids. Crop Science, 64: 2436–2458.
  4. Vasquez A, Balakrishnan D, Ayala J, Loftin K, Louis J and Kariyat R (2024). Brown midrib (BMR) and plant age impact fall armyworm (Spodoptera frugiperda) growth and development in sorghum-sudangrass (Sorghum x drummondii). Scientific Reports, 14: 12649.
  5. Shrestha K1,*, Zogli P1,*, Pingault L1, Grover S1, Cardona JB2 and Louis J#(2024). Disruption of the sorghum circadian clock impacts sorghum-sugarcane aphid interaction dynamics and aphid feeding behavior. Plant Stress, 100407, DOI: https://doi.org/10.1016/j.stress.2024.100407
  6. Shinde S2, Kundu P1 and Louis J#(2024). Beyond bites: differential role of fall armyworm oral secretions and saliva in modulating sorghum defenses. Molecular Plant-Microbe Interactions, DOI: 10.1094/MPMI-12-23-0213-FI
  7. Ikuze E2, Cromwell S, Ayayee, P and Louis J#(2024). Influence of microbes in mediating sorghum resistance to sugarcane aphids. Diversity, 16(2): 85.
  8. Yactayo-Chang JP, Broadhead GT, Housler RJ, Resende Jr MF, Verma K2, Louis J, Basset GJ, Beck JJ and Block AK (2024). Maize terpene synthase 1 impacts insect behavior via the production of monoterpene volatiles β-myrcene and linalool. Phytochemistry, 218: 113957.
  9. Archer L, Mondal HA, Behera S, Twayana M, Patel M, Louis J, Nalam VJ, Keereetaweep J, Chowdhury Z and Shah J (2023). Interplay between MYZUS PERSICAE-INDUCED LIPASE 1 and OPDA signaling in limiting green peach aphid infestation on Arabidopsis thaliana. Journal of Experimental Botany, 74: 6860-6873.
  10. Puri H2, Grover S1, Pingault L1, Sattler SE and Louis J#(2023). Temporal transcriptomic profiling elucidates sorghum defense mechanisms against sugarcane aphids. BMC Genomics, 24: 441.
  11. Kundu P1, Grover S1, Perez A3, Raya Vaca JD3, Kariyat K and Louis J#(2023). Sorghum defense responses to sequential attack by insect herbivores of different feeding guilds. Planta, 258: 35.
  12. Mou DF1, Kundu P1, Pingault L1, Puri H2, Shinde S2 and Louis J# (2023). Monocot crop-aphid interactions: Plant resilience and aphid adaptation. Current Opinion in Insect Science, 57: 101038.
  13. Baldin ELL, Soares MCE, Santana ADS, Hunt TE, McMechan AJ, Velez AM and Louis J (2023). Efficacy of ethanolic seed extracts of Annonaspp. against Aphis glycines. Crop Protection, 170: 106268.
  14. Da Silva KF2, Burnham E, Louis J, Golick D and Everhart SE (2023). Nationwide assessment of leadership development for graduate students in the agricultural plant sciences. PLoS One, 18(4): e0279216
  15. Cardona JB2, Grover S1, Bowman MJ, Busta L, Kundu P1, Koch KG, Sarath G, Sattler SE and Louis J# (2023). Sugars and cuticular waxes impact sugarcane aphid (Melanaphis sacchari) colonization on different developmental stages of sorghum. Plant Science, 330: 111646.
  16. Puri H2, Ikuze E3, Ayala J3, Rodriguez I3, Kariyat K, Louis J and Grover S1 (2023). Greenbug feeding-induced resistance to sugarcane aphids in sorghum. Frontiers in Ecology & Evolution, 11:1105725.
  17. Cardona JB2, Grover S1, Busta L, Sattler SE and Louis J# (2023). Sorghum cuticular waxes influence host plant selection by aphids. Planta, 257(1), 22.
  18. Grover S1, Shinde S2, Puri H2, Palmer N, Sarath G, Sattler SE and Louis J#(2022). Dynamic regulation of phenylpropanoid pathway metabolites in modulating sorghum defense against fall armyworm. Frontiers in Plant Science, 13:1019266.
  19. Grover S1, Puri H2, Xin Z, Sattler S and Louis J#(2022). Dichotomous role of Jasmonic acid in modulating sorghum defense against aphids. Molecular Plant-Microbe Interactions®, 35:9, 755-767. DOI: https://doi.org/10.1094/MPMI-01-22-0005-R
  20. Pingault L1, Basu S1, Vellichirammal NN, Williams WP, Sarath G and Louis J# (2022). Co-transcriptomic analysis of the maize–western corn rootworm interaction. Plants, 11(18), 2335.
  21. Pingault L1, Luong M2Louis J and Hein G (2022). Wheat transcriptomic responses to long-term feeding by wheat curl mites. Scientific Reports, 12: 12535.
  22. Grover S1 , Cardona J2, Zogli P1, Alvarez S, Naldrett M, Sattler SE and Louis J# (2022). Reprogramming of sorghum proteome in response to sugarcane aphid infestation. Plant Science, DOI: 10.1016/j.plantsci.2022.111289
  23. Alam ST, Sarowar S, Mondal HA, Makandar M, Chowdhury Z, Louis J and Shah J (2022). Opposing effects of MYZUS PERSICAE-INDUCED LIPASE 1 and jasmonic acid influence the outcome of Arabidopsis thaliana-Fusarium graminearum interaction. Molecular Plant Pathology, https://doi.org/10.1111/mpp.13216 
  24. Pingault L1, Basu S1, Zogli P1, Williams WP, Palmer N, Sarath G and Louis J# (2021). Aboveground herbivory influences belowground defense responses in maize. Frontiers in Ecology and Evolution, DOI: 10.3389/fevo.2021.765940
  25. Da Silva KF2, Everhart SE# and Louis J# (2021). Impact of maize hormonal interactions on the performance of Spodoptera frugiperda in plants infected with Clavibacter michiganensis subsp. nebraskensis. Arthropod-Plant Interactions, DOI: 10.1007/s11829-021-09849-x
  26. Pingault L1, Varsani S2, Palmer N, Ray S, Williams WP, Luthe DS, Ali JG, Sarath G and Louis J# (2021). Transcriptomic and volatile signatures associated with maize defense against corn leaf aphid. BMC Plant Biology, 21: 138. https://doi.org/10.1186/s12870-021-02910-0
  27. Zogli P1, Pingault L1, Grover S2 and Louis J# (2020). Ento(o)mics: the intersection of “omic” approaches to decipher plant defense against sap-sucking insect pests. Current Opinion in Plant Biology, 56: 153-161. DOI: 10.1016/j.pbi.2020.06.002
  28. Grover S2, Agpawa E3, Sarath G, Sattler SE and Louis J# (2020). Interplay of phytohormones facilitate sorghum tolerance to aphids. Plant Molecular Biology, DOI: 10.1007/s11103-020-01083-y
  29. Pingault L1, Palmer NA, Koch KG, Heng-Moss T, Bradshaw JD, Seravalli J, Twigg P, Louis J# and Sarath G# (2020). Differential defense responses of upland and lowland switchgrass cultivars to a cereal aphid pest. International Journal of Molecular Sciences, 21, 7966.
  30. Zogli P1, Alvarez S, Naldrett M, Palmer N, Koch K, Pingault L1, Bradshaw J, Twigg P, Heng-Moss T, Louis J# and Sarath G#(2020). Greenbug (Schizaphis graminum) herbivory significantly impacts protein and phosphorylation abundance in switchgrass (Panicum virgatum). Scientific Reports, 10: 14842.
  31. Koch KG, Palmer NA, Donze-Reiner T, Scully ED, Seravalli J, Amundsen K, Twigg P, Louis J, Bradshaw JD, Heng-Moss T and Sarath G (2020). Aphid-responsive defense networks in hybrid switchgrass. Frontiers in Plant Science, DOI: 10.3389/fpls.2020.01145
  32. Grover S2, Varsani S2, Kolomiets M and Louis J# (2020). Maize defense elicitor, 12-Oxo-phytodienoic acid, prolongs aphid salivation. Communicative & Integrative Biology, 1: 63-66
  33. Basu S1, Pereira A, Pinheiro DH, Wang H, Valencia-Jiménez A, Siegfried BD, Louis J, Zhou X and Vélez AM. (2019) Evaluation of reference genes for real-time quantitative PCR analysis in southern corn rootworm, Diabrotica undecimpunctata howardi (Barber). Scientific Reports, 9: 10703.
  34. Palmer NA, Basu S1, Heng-Moss TM, Bradshaw JD, Sarath G# and Louis J#(2019). Fall armyworm (Spodoptera frugiperda Smith) feeding elicits differential defense responses in upland and lowland switchgrass. PLoS One, 14(6): e0218352.
  35. Varsani S2, Grover S2, Zhou S, Koch KG, Huang PC, Kolomiets M, Williams WP, Heng-Moss T, Sarath G, Luthe DS, Jander G and Louis J# (2019). 12-Oxo-phytodienoic acid acts as a regulator of maize defense against corn leaf aphid. Plant Physiology, 179: 1402-1415.
  36. Tetreault HM, Grover S2, Scully ED, Gries T, Palmer N, Sarath G, Louis J and Sattler SE (2019). Global responses of resistant and susceptible sorghum (Sorghum bicolor) to sugarcane aphid (Melanaphis sacchari). Frontiers in Plant Science, 10: 145.
  37. Nalam VJ, Louis J and Shah J (2019). Plant defense against aphids, the pest extraordinaire. Plant Science, 279: 96-107.
  38. Grover S2, Wojahn B3, Varsani S2, Sattler SE and Louis J# (2019). Resistance to greenbugs in the sorghum nested association mapping population. Arthropod-Plant Interactions, 13: 261-269.
  39. Chapman K2, Marchi-Werle L, Hunt TE, Heng-Moss T and Louis J# (2018). Abscisic and jasmonic acids contribute to soybean tolerance to the soybean aphid (Aphis glycines Matsumura). Scientific Reports, 8: 1514.
  40. Koch KG, Donze-Reiner T, Baird LM, Louis J, Amundsen K, Sarath G, Bradshaw JD and Heng-Moss T (2018). Evaluation of greenbug and yellow sugarcane aphid feeding behavior on resistant and susceptible switchgrass cultivars. BioEnergy Research, 8: 165-174.
  41. Nalam VJ, Louis J, Patel M and Shah J (2018). Arabidopsis-Green Peach Aphid interaction: rearing the insect, no-choice and fecundity assays, and electrical penetration graph technique to study insect feeding behavior. Bio-protocol, 8(15): e2950.
  42. Basu S1, Varsani S2 and Louis J# (2018). Altering plant defenses: Herbivore-associated molecular patterns and effector arsenal of chewing herbivores. Molecular Plant-Microbe Interactions, 31(1): 13-21.
  43. Mondal H, Louis J, Archer L, Patel M, Nalam VJ, Sarowar S, Sivapalan V, Root DD and Shah J (2018). Arabidopsis ACTIN-DEPOLYMERIZING FACTOR3 is required for controlling aphid feeding from the phloem. Plant Physiology, 176: 879-890.
  44. Koch K, Chapman K2Louis J, Heng-Moss T and Sarath, G (2016). Plant tolerance: A unique approach to control hemipteran pests. Frontiers in Plant Science, 7:1363.
  45. Ray S, Basu S1, Rivera-Vega L, Acevedo FE, Louis J, Felton GW and Luthe DS (2016). Lessons from the far end: caterpillar frass-induced defenses in maize, rice, cabbage and tomato. Journal of Chemical Ecology, 42:1130–1141.
  46. Varsani S2, Basu S1, Williams WP, Felton GW, Luthe DS and Louis J# (2016). Intraplant communication in maize contributes to defense against insects. Plant Signaling & Behavior, 11, e1212800.
  47. Louis J#, Basu S1, Varsani S2, Castano-Duque L, Jiang V3, Williams WP, Felton GW and Luthe DS. (2015). Ethylene contributes to maize insect resistance1-mediated maize defense against the phloem sap-sucking corn leaf aphid. Plant Physiology, 169: 313-324.
  48. Louis J# and Shah J (2015). Plant defence against aphids: the PAD4 signalling nexus. Journal of Experimental Botany, 66 (2): 449-454.
  49. Louis J#, Peiffer M, Ray S, Luthe DS and Felton GW (2013). Host-specific salivary elicitor(s) of European Corn Borer (Ostrinia nubilalis) induce defenses in tomato and maize. New Phytologist, 199: 63-73.
  50. Louis J and Shah J (2013). Arabidopsis thaliana - Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. Frontiers in Plant Science, 4: 213.
  51. Louis J#, Luthe DS and Felton GW (2013). Salivary signals of European corn borer induce indirect defenses in tomato. Plant Signaling & Behavior, 10.4161/psb.27318.
  52. Cao T, Lahiri I, Singh V, Louis J, Shah J and Ayre BG (2013). Metabolic engineering of raffinose-family oligosaccharides in the phloem reveals alterations in carbon partitioning and enhances resistance to green peach aphid. Frontiers in Plant Science, 4: 263.
  53. Louis J, Gobbato E, Mondal HA, Feys BJ, Parker JE and Shah J (2012). Discrimination of Arabidopsis PAD4 activities in defense against green peach aphid and pathogens. Plant Physiology, 158: 1860-1872. (Featured Cover article, April 2012).
  54. Louis J*, Mondal HA* and Shah J (2012). Green peach aphid infestation induces Arabidopsis PHYTOALEXIN DEFICIENT4 expression at site of stylet penetration. Plant Signaling & Behavior, 7: 11, 1431-1433. *Co-first authors.
  55. Singh V, Louis J, Ayre B, Reese JC and Shah J (2011). TREHALOSE PHOSPHATE SYNTHASE11-dependent trehalose metabolism promotes Arabidopsis thaliana defense against the phloem-feeding insect, Myzus persicae. Plant Journal, 67 (1): 94-104.
  56. Zhu L, Reese JC, Louis J, Campbell L and Chen MS (2011). Electrical penetration graph (EPG) analysis of the feeding behavior of soybean aphids on soybean cultivars with antibiosis. Journal of Economic Entomology, 104 (6): 2068-2072.
  57. Louis J, Kukula K-L, Singh V, Reese JC, Jander G and Shah J (2010). Antibiosis against the green peach aphid requires the Arabidopsis thaliana MYZUS PERSICAE-INDUCED LIPASE1 gene. Plant Journal, 64 (5): 800-811.
  58. Pallipparambil GR, Reese JC, Avila CA, Louis J and Goggin FL (2010). Mi-mediated aphid resistance in tomato: tissue localization and impact on the feeding behavior of two potato aphid isolates with differing levels of virulence. Entomologia Experimentalis et Applicata, 135: 295-307.
  59. Louis J, Leung Q, Pegadaraju V, Reese JC and Shah J (2010). PAD4-dependent antibiosis contributes to the ssi2-conferred hyper-resistance to the green peach aphid. Molecular Plant-Microbe Interactions, 23 (5): 618-627.
  60. Mutti NS, Louis J, Pappan LK, Pappan K, Begum K, Chen MS, Park Y, Dittmer N, Marshall J, Reese JC and Reeck GR (2008). A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proceedings of the National Academy of Sciences USA, 105 (29): 9965-9969.
  61. Pegadaraju V*, Louis J*, Singh V, Reese JC, Bautor J, Feys BJ, Cook G, Parker JE and Shah J (2007). Phloem-based resistance to green peach aphid is controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE SUSCEPTIBILITY1. Plant Journal, 52 (2): 332-341.
  62. Diaz-Montano J, Reese JC, Louis J, Campbell L and Schapaugh WT (2007). Feeding behavior by the soybean aphid (Hemiptera: Aphididae) on resistant and susceptible soybean genotypes. Journal of Economic Entomology, 100 (3): 984-989.
  63. Voothuluru P, Meng J, Khajuria C, Louis J, Zhu L, Starkey S, Wilde GE, Baker CA and Smith CM (2006). Categories and inheritance of resistance to Russian wheat aphid (Homoptera: Aphididae) biotype 2 in a selection from wheat cereal introduction 2401. Journal of Economic Entomology, 99 (5): 1854-1861.

Book Chapters/Proceedings

  1. Felton GW, Chung SC, Estrada-Hernańdez MG, Louis J, Peiffer M and Tian D (2014). Herbivore oral secretions are the first line of protection against plant induced defenses. Annual Plant Reviews, 47: 37-76.
  2. Luthe DS, Louis J, Jin S and Castano-Duque L (2013). Expression of the defense gene mir1 depends on herbivore feeding guild and maize genotype. In “Proceedings of the IOBC/WPRS Working Group - Induced resistance in plants against insects and diseases”, Vol 89: 323-327. M Bardin, B Mauch-Mani, S Mazzotta, P Nicot, C Pieterse, J-L Poessel, M Ponchet and A Schmitt, eds. OIBC/OILB, Avignon, France.
  3. Louis J#, Singh V and Shah J (2012). Arabidopsis thaliana – aphid interaction. The Arabidopsis Book, 10: e0159.
  4. Parker JE, Rietz S, Wirthmüller L, Bartsch M, Bautor J, Pegadaraju V, Louis J, Singh V, Reese J and Shah J (2008). Processes in plant resistance to invasive pathogens and probing insects. In “Biology of Plant-Microbe Interactions”, Vol 6. M. Lorito, S. L. Woo, and F. Scala, eds. IS- MPMI, St Paul, MN.